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Abstract 
An approach is considered for numerical integration of ordinary differential 

equations systems ofthefirst order with choice of a computation scheme, ensuring the required local precision. The consideration is made on the basis of schemes of the Runge-Kutta-Felberg type. Criteria are proposed as well as a methodfor the realization of the choice of an "" optimum scheme. The effectiveness of the presented approach to problems in the field 
of satellite dynamics is illustrated by results from a numerical experiment. These results 
refer to a case when a satisfactory global stability of the solution for all treated cases is 
available. The effectiveness has been evaluated as good, especially when solving multi-
variable problems in the sphere of simulation modelling. 
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Introduction 

The practice of computing often demands the solution of ordinary 
differential equation systems (ODES) of the first order: 
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with initial conditions yi ( x o ) = y°. The type of the right side of (1) determines 

the problem as stiff or non-stiff. 
Different groups of methods exist for numerical solution of (1) in cases of 

non-stiff problems. First, there are ones that are with general character, 
applicable to a wide class of problems and there are others, which are 
specialized, oriented to specific problems. The latter have certain advantages, 
yet they require development for each specific case. An example of the second 
type of methods is the so-called recurrent power series [1]. The methods with 
more common application are divided mainly into one-step and multiple-step 
ones [2]. 

As far as the order of the equations systems of higher order is subject to 
lowering, the methods for first-order systems are always applicable. There are 
also methods, which are applied without preliminary order lowering. As a rule 
they are more efficient in cases when they can be applied [3,4] but Nystrom's 
schemes [5] (which are the most popular) have a more restricted area of 
application since they require the right part to be independent on the first 
derivative of the dependent variable y. 

In order to minimize the error and the computational expenses for each 
integration step, used to make the computations, major importance is attributed 
to the step size for numerical integration and the order of the computational 
schemes. Approaches exist for determination of optimum step size, which are 
possible both with the one-step and the multi-step methods. The change of the 
step in the one-step methods is easier while the multi-step methods require re-
computation of the function derivative values in new points and produce 
complications [6]. The possibility to change the order (line) of the integration 
method in some multi-step methods [2, 7] attracts attention. 

Two basic final approaches exist in the numerical integration of ODES. 
The first one is connected with integration through optimal step selection. 
The optimal step size is determined on the basis of error assessment; in general, 
at smaller error the step increases and vice versa. Optimization of the 
computational expenses is achieved along with ensuring global stability of the 
numerical solution at the end of the integration interval. 
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The second approach requires finding the solution in equidistant values 
by the independent variable. The integration by a constant step, however, does 
not always meet the requirement for sufficient local error, connected with the 
type of the functions on the right side of the equations, hence it can influence 
the solution stability. 

There exists, however, a possibility during integration with optimal step 
to obtain the solution in desired points on the independent variable on the 
basis of interpolation. In addition, special methods exist, combining numerical 
integration and interpolation, with which the solution is obtained in arbitrary 
points in a natural way with increased computational efficiency [8, 9]. 

Different methods and programs-integrators of common differential 
equations are developed and their efficiency has been examined. Because of 
their large number we will mention only a few, having in common with the 
evident one-step methods of the Runge-Kutta type [10, 11, 12, 13]. Although 
the efficiency estimations poin to some advantages in behalf of one or another 
method and computer programs, when solving test problems there is not any 
certainty as for which method is the most suitable one. 

A number of methodological groups exist for numerical solution of (1). 
The one-step methods of the Runge-Kutta type [1] are characterised by 
adaptability and easy programme realization. Different computing schemes, 
corresponding to those methods are known. The advantages of the schemes of 
the Runge-Kutta-Felberg (RKF) type [2, 3] are due to the fact that with minimum 
additional computations, two solutions are simultaneously obtained with 
different precision: 

The difference between the two solutions y. _ y. gives the exact value 

of the main member of the local error 0 ( h p + l ) f ° r a scheme of the p t h order, on 
the basis of which the local error can be estimated. The classical RKF schemes 
were followed by later schemes with enhanced efficiency as well as by 
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a higher order of the solution precision [16, 17, 18, 19]. In cases of computations 
made on the basis of a scheme of the p , h order, by changing the integration 
step in definite limits, the necessary local precision is obtained and hence, a 
certain stability of the solution. 

Formulation of the Problem 
In the integration region along the independent variable x, the local error  

is a variable quantity and depends on step h, on the pth order of the integration  
scheme and on the type of the functions on the right side of (1). Minimization  
of the local error by means of stepsize control is not the only possible one. 
Actually, the minimization of the local error by stepsize control is not always 
suitable. Instead, we can use an integration scheme of the lowest possible 
order, which provides the necessary local precision in integration with constant 
step. In this way the computations can turn out to be considerably less than if 
a scheme is used of an order, providing precision for the entire integration 
region along an independent variable. The issue for selection of optimal order 
of the integration schemes is dated far back [20, 21]. This is possible even 
more in case when parallel integration of several ODES is necessary when the 
solutions have different character and are obtained with different local 
precision. 

In the classical one-step methods of the Runge-Kutta type, the choice of a 
scheme with sufficient local precision is a problem, connected with the 
possibility for evaluation of the local error. In this aspect, the methods of the 
Runge-Kutta-Felberg type have advantages, which allow to choose a strategy 
for selection of the optimum integration scheme [22]. RKF schemes are known 
of 1/2,2/3,3/4,4/5,5/6 and 7/8 order [14,15]. In the schemes of 1/2 up to 4/5 
order, the functions on the right side of (1) are computed in 3 to 6 intermediate 
points, respectively, and for the schemes of 5/6 and 7/8 order - in 8 and 13, 
respectively. Special methods are known for integration of ODES with variable 
order of precision [ ] but instead we shall examine the possibility to use the 
RKF schemes. 

Let us consider the possibility to investigate the efficiency of selection of 
an optimum scheme, connected with the integration of the equation of the 
artificial Earth's satellites motion (AES). The most common form of this 
equation is [5]: 
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In (3) ^ is the satellite radius vector, m- its mass, M- the Earth mass, G- the 

gravitation constant, ^ - the disturbing forces, which determine the motion 

model and t- the time. The vector equation (3) is usually solved by decreasing  
the order to a system of two equations: 

(4) 

In (4) y is the velocity vector. The conditions, which specify the numerical 

integration local error of (4) at a constant step At and a scheme of the p t h order 
are different for the separate sections of the trajectory. 

A Strategy for Choosing the Integration Scheme 
The choice of an integration scheme is not aimed by far at providing a 

minimum local error, but just a sufficient local error with which the numerical 
solution will be steady within a given interval, with minimum computation 
expenses. 

In [22, 24] we examined the following strategy of choosing an optimum 
integration scheme for numerical integration based on the following cases: 

a) For some functions (pf the local error Q> has a minimum value, 

bigger than the necessary one; a scheme of a higher order is now used and the 
computations are repeated. 

b) Smaller errors Oi < Si.Omax are obtained for all functions where 

Si are rough estimations of the relations Oi ( h p + 2 ) / O i ( h p + 1 ) ; In this case it 

is reasonable to switch to a scheme of a lower order. 
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Here it should be kept in mind that the estimation of s ' is an essential problem. 
The experience shows that the above-stated contradicting requirements can 
be verified more precisely in the specific case of solving (4). This is made 

when instead of the local errors Q ' , i= l , . . . , 6, an evaluation of error 

O = ^(X + O y

2 + O^2 * s m a ( i e . Besides, when proceeding with an integration 

scheme of a higher order, the relative error value should be preserved. Later 
on, this value can be used as a lower limit, the passing of which should be 
accompanied by selection of a scheme of a lower order. This solves the problem 
with the difficulties in estimating. The strategy of choosing a scheme can be 
presented, as follows: 

a ' ) 0>e.Ar> where Ar = ^Ax 2 + Ay2 + Az2 > £ i s t n e v a l u e o f t n e 

relative error selected with a view to attaining a global stability of the solution; 
then it is proceeded with the selection of a scheme of a higher order and when 

reaching a suitable scheme, the value of o is included in Q . 

b') o < O" P r o c e e d i n g with a scheme of a lower order. 

The value of Q is determined on the basis of the product C p - 0 in which the 

constants c P are dtermined empirically and the following values are accepted 
as suitable: c 2=.05, c4-.09, c 5=.l, c7=.2. 

Evaluation of the efficiency 
The advantage of selecting an optimum scheme for numerical 

integration of ODES, treated from the computing expenses point of view, is 
different in each separate case. The stability of the RKF schemes is investigated 
on the basis of the model equations [3] with regulation of the step length. 

It is of major importance to know how the use of schemes of a lower 
precision order influences the global stability of the solution. Numerical 
experiments have been carried out for integration of six satellite orbits with 
main semi-axes and eccentricities, given on Table 1. The RKF scheme of 7/8 
order is accepted as a guarantee of the numerical solution's stability with 
selection of a constant step within definite limits. The efficiency is estimated 
on the basis of the number of computations on the right side of (4) by the 
formula 
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n _ n? - n~ 
v — where n , refers to the guaranteed scheme, and n ^ - to the case 

m 
of choosing an optimum scheme. 

c') O < O" P r o c e e d i n g with a scheme of a lower order. 

The value of Q is determined on the basis of the product C p .0 in which the 

constants c P are determined empirically defined and the following values are 
accepted as suitable: c 2=.05, c4=.09, c 5=.l, c7=.2 . 

Table 1. 

Orbit number Eccentricity Main semi-axis [m] 

1 .01 8 000 000 
2 .02 10 000 000 
3 .04 20 000 000 
4 .05 30 000 000 
5 .07 42 241 085 
6 .08 50 000 000 

Evaluation of the efficiency 
The advantage of selecting an optimum scheme for numerical 

integration of ODES, treated from the computing expenses point of view, is 
different in each separate case. The stability of the RKF schemes is investigated 
on the basis of the model equations [3] with regulation of the step length. 

It is of major importance to know how the use of schemes of a lower 
precision order influences the global stability of the solution. Numerical 
experiments have been carried out for integration of six satellite orbits with 
main semi-axes and eccentricities, given on Table 1. The RKF scheme of 7/8 
order is accepted as a guarantee of the numerical solution stability with selection 
of a constant step within definite limits. The efficiency is estimated on the 
basis of the number of computations on the right side of (4) by the formula 

0 _ n7 ~ n~ 
Q — where n ? refers to the guaranteed scheme, and n ~ - to the case 

m 
of choosing an optimum scheme. 
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Fig. 1 presents the efficiency of the computations for each separate 
orbit at different integration steps as well as the total efficiency. The stability 
of the numerical solution is estimated on the basis of equation of type (4), 
which includes different disturbing factors, related to the Earth gravitation 
field. Fig. 2 presents the differences, obtained in the selection of optimum 
integration scheme, towards the use of a scheme of the maximum order. The 
temporal integration interval is one day and night. The computations are made 

with requirements for local relative error s < 2.10" 7. The estimation of the 
results allows to draw up the following basic conclusions: 

- the choice of a scheme, based on error estimation with the RKF methods 
can result in significant economy of machine time; 

Fig. 1. Average efficiency for one day and night with numerical 
integration of the equation for artificial earth satellites motion 
with selection of an optimum scheme 
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- by decreasing the integration step, the global stability of the solution 
decreases with using schemes of lower precision order, but it is 
completely satisfactory for a wide range of problems; when necessary 
to achieve a better stability for a definite class of orbits, it is necessary 
to point out a smaller local error; 

- when multi-parameter computations are made in the field of immitation 
modelling, the experimenter can trust the proposed strategy for selection 
of computation schemes. 

integration step [s] 

Fig. 2. The difference between the solution, obtained with 
selection of an optimum scheme and with a scheme of the 7th 

order, obtained for one day and night at 

The numerical experiments were carried out on the basis of programmes 
using the Fortran programme language [24]. For this purpose an integrator of 
systems of independent vector differential equations has been developed. It 
allows the integration of every system to be performed independently on the 
integration of the remaining ones, with individual choice of a method of 
appropriate order. 
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The examined approach for integration of independent differential 
equations systems is applicable for solution of problems with many objects. 
The enhancement of the computational efficiency is especially beneficial for 
problems, whose solution should be made in real time. The examined approach 
provides additional opportunities, connected with computational parallelization 
in multi-processor systems as well as in network computations. 
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ИНТЕГРИРАНЕ Н А УРАВНЕНИЕТО Н А Д В И Ж Е Н И Е Н А 
И З К У С Т В Е Н И С П Ъ Т Н И Ц И Н А З Е М Я Т А С И З Б О Р Н А СХЕМИ 

Н А РУНГЕ-КУТА-ФЕЛБЕРГ С О П Т И М А Л Е Н РЕД Н А 

Т О Ч Н О С Т 

А. Атанасов 

Резюме 
Обсъжда се подход за числено интегриране на уравнението на 

движение на изкуствени спътници на Земята с избор на изчислителна 
схема осигуряваща необходимата локална точност. Разглежданията са 
направени на основата на изчислителни схеми от типа на Рунге-Кута-
Фелберг. Предлага се критерий за избор на "оптимална" схема. 
Ефективността и устойчивостта на разглеждания подход е илюстрирана 
с резултати от числени експерименти. Изборът на оптимална схема е 
подходящ при решаване на многопараметрични задачи в сферата на 
имитационното моделиране, където е от значение намаляването на 
изчислителните разходи при достатъчна глобална устойчивот на 
численото решение. 
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