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Abstract

An approach is considered for numerical integration of ordinary differential
equations systems of the first order with choice of a compultation scheme, ensuring the required
local precision. The consideration is made on the basis of schemes of the Runge-Kutta-
Felberg rype. Criteria are proposed as well as a method for the realization of the choice of
an “optimum’” scheme. The effectiveness of the presented approach o problems in the field
of satellite dynamics is illustrated by results from a numerical experiment. These results
refer to a case when a satisfactory global stability of ihe solution for all treated cuases is
available. The effectiveness has been evaluated as good, especially when solving multi-
varigble problems in the sphere of simulation modelling.
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Introduction
The practice of computing often demands the solution of ordinary
differential equation systems (ODES) of the first order:
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with initial conditions y ()= y? .. The type of the right side of (1) determines

the problem as stiff or non-stiff.

Different groups of methods exist for numerical solution of (1) in cases of
non-stiff problems. First, there are ones that are with general character,
applicable to a wide class of problems and there are others, which are
specialized, ortented to specific problems. The latter have certain advantages,
yet they require development for each specific case. An example of the second
type of methods is the so-called recurrent power series [1]. The methods with
more common applicatton are divided mainly into one-step and multiple-step
ones [2].

As far as the order of the equations systems of higher order is subject to
lowering, the methods for first-order systems are always applicable. There are
also methods, which are applied without preliminary order lowering. As arule
they are more efficient in cases when they can be applied [3, 4] but Nystrom’s
schemes [5] (which are the most popular) have a more restricted area of
application since they require the right part to be independent on the first
derivative of the dependent variable y.

In order to minimize the error and the computational expenses for each
Integration step, used to make the computations, major importance is attributed
to the step size for numerical integration and the order of the computational
schemes. Approaches exist for determination of optimum step size, which are
possible both with the one-step and the multi-step methods. The change of the
step in the one-step methods is easier while the multi-step methods require re-
computation of the function derivative values in new points and produce
complications [6]. The possibility to change the order (line) of the integration
method in some multi-step methods [2, 7] attracts attention.

Two basic final approaches exist in the numerical integration of ODES.
The first one is connected with integration through optimal step selection.
The optimal step size is determined on the basis of error assessment; in general,
at smaller error the step increases and vice versa. Optimization of the
computational expenses is achieved along with ensuring global stability of the
numerical solution at the end of the integration interval.

25



The second approach requires finding the solution in equidistant values
by the independent variable. The integration by a constant step, however, does
not always meet the requirement for sufficient local error, connected with the
type of the functions on the right side of the equations, hence it can influence
the solution stability.

There exists, however, a possibility during integration with optimal step
to obtain the solution in desired points on the independent variable on the
basis of interpolation. In addition, special methods exist, combining numerical
integration and interpolation, with which the solution is obtained in arbitrary
points in a natural way with increased computational efficiency [8,9].

Different methods and programs-integrators of common differential
equations are developed and their efficiency has been examined. Because of
their large number we will mention only a few, having in common with the
evident one-step methods of the Runge-Kutta type {10,11,12,13]. Although
the efficiency estimations poin to some advantages in behalf of one or another
method and computer programs, when solving test problems there is not any
certainty as for which method is the most suitable one.

A number of methodological groups exist for numerical solution of (1).
The one-step methods of the Runge-Kutta type [1] are characterised by
adaptability and easy programme realization. Different computing schemes,
corresponding to those methods are known. The advantages of the schemes of
the Runge-Kutta-Felberg (RKF) type [2,3] are due to the fact that with minimum
additional computations, two solutions are simuitaneously obtained with
different precision:
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The difference between the two solutions ;. — y, givesthe exact value

of the main member of the local error O(R?*'} for a scheme of the p™ order, on

the basis of which the local error can be estimated. The classical RKF schemes
were followed by later schemes with enhanced efficiency as well as by
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a higher order of the solution precision {16,17,18,19]. Incases of computations
made on the basis of a scheme of the p™ order, by changing the integration
step in definite limits, the necessary local precision is obtained and hence, a
certain stability of the solution.

Formulation of the Problem

In the integration region along the independent variable x, the local error
is a variable quantity and depends on step b, on the p% order of the integration
scheme and on the type of the functions on the right side of {1). Minimization
of the local error by means of stepsize control is not the only possible one.
Actually, the mintmization of the local error by stepsize control is not always
suttable. Instead, we can use an integration scheme of the lowest possible
order, which provides the necessary local precision in integration with constant
step. In this way the computations can turn out to be considerably less than if
a scheme is used of an order, providing precision for the entire integration
region along an independent variable. The issue for selection of optimal order
of the integration schemes is dated far back [20, 21]. This is possible even
more in case when parallel integration of several ODES is necessary when the
solutions have different character and are obtained with different local
precision.

In the classical one-step methods of the Runge-Kutta type, the choice ofa
scheme with sufficient local precision is a problem, connected with the
possibility for evaluation of the local error. In this aspect, the methods of the
Runge-Kutta-Felberg type have advantages, which allow to choose a strategy
for selection of the optimum integration scheme [22]. RKF schemes are known
of 1/2, 2/3, 3/4, 4/5, 5/6 and 7/8 order [14,15]. In the schemes of 1/2 up to 4/5
order, the functions on the right side of (1) are computed in 3 to 6 intermediate
points, respectively, and for the schemes of 5/6 and 7/8 order - in 8 and 13,
respectively. Special methods are known for integration of ODES with variable
order of precision [ ] but instead we shall examine the possibility to use the

RKF schemes.

Let us consider the possibility to investigate the efficiency of selection of
an optimum scheme, connected with the integration of the equation of the
artificial Earth’s satellites motion (AES). The most common form of this
equation is [5]:
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In (3) }’ is the satellite radius vector, m- its mass, M- the Earth mass, G- the

gravitation constant, }’- the disturbing forces, which determine the motion

model and t- the time. The vector equation (3) is usually solved by decreasing
the order to a_svstem of two equations:
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In (4) {} is the velocity vector. The conditions, which specify the numerical

integration local error of (4) at a constant step At and a scheme of the p™ order
are different for the separate sections of the trajectory.

A Strategy for Choosing the Integration Scheme

The choice of an integration scheme is not aimed by far at providing a
minimum local error, but just a sufficient local etror with which the numerical
solution will be steady within a given interval, with minimum computation
expenses.

In [22,24] we examined the following strategy of choosing an optimum
integration scheme for numerical integration based on the following cases:

a) For some functions ¢, the local error i has a minimum value,

bigger than the necessary one; a scheme of a higher order is now used and the
computations are repeated.

b) Smaller errors g. <G Ohy A€ obtained for all functions where

g' are rough estimations of the relations Q' (h‘”z) / o' (h"“) ; In this case it

18 reasonable to switch to a scheme of a lower order.
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Here it should be kept in mind that the estimation of §! is an essential problem.

The experience shows that the above-stated contradicting requirements can
be verified more precisely in the specific case of solving (4). This is made

when instead of the local errors a, i=1,..., 6, an evaluation of error

O= 1/ az + (_): + f)_f is made. Besides, when proceeding with an integration

scheme of a higher order, the relative error value should be preserved. Later
on, this value can be used as a lower limit, the passing of which should be
accompanied by selection of a scheme of a lower order. This solves the problem
with the difficulties in estimating. The strategy of choosing a scheme can be
presented, as follows;

a’} O>gAr, where Ar= Jsz + Ay’ + Az%, ¢ is the value of the

relative error selected with a view to attaining a global stability of the solution;
then it is proceeded with the selection of a scheme of a higher order and when

reaching a suitable scheme, the value of ( is included in (.

b’) § < O - proceeding with a scheme of a lower order.

The value of () is determined on the basis of the product ¢, O in which the

constants ¢, are dtermined empirically and the following values are accepted
as suitable: ¢,=.05, ¢,=.09, c=.1, ¢,=.2.

Evaluation of the efficiency

The advantage of selecting an optimum scheme for numerical
integration of ODES, treated from the computing expenses point of view, is
different in each separate case. The stability of the RKF schemes is investigated
on the basis of the model equations [3] with regulation of the step length.

It is of major importance to know how the use of schemes of a lower
precision order influences the global stability of the solution. Numerical
experiments have been carried out for integration of six satellite orbits with
main semi-axes and eccentricities, given on Table 1. The RKF scheme of 7/8
order is accepted as a guarantee of the numerical solution’s stability with
selection of a constant step within definite limits. The efficiency is estimated
on the basis of the number of computations on the right side of (4) by the
formula
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Q=—"— where n: refers to the guaranteed scheme, and p. - to the case
nz

of choosing an optimum scheme.

c’) O <O - Proceeding with a scheme of a lower order.

The value of (y is determined on the basis of the product ¢, O in which the

constants ¢, are determined empirically defined and the following values are
accepted as suitable: ¢,=.05, ¢,=.09, ¢=.1,¢c.=2.

Table 1.
Orbit number | Eccentricity Main semi-axis [m}
l 0 8 000 000
2 02 10 000 000
3 .04 20 600 009
4 .05 30 000 000
5 .07 42241 083
6 .08 50 600 000

Evaluation of the efficiency

The advantage of selecting an optimum scheme for numerical
integration of ODES, treated from the computing expenses point of view, is
different in each separate case. The stability of the RKF schemes is investigated
on the basis of the model equations [3] with regulation of the step length.

It is of major importance to know how the use of schemes of a lower
precision order influences the global stability of the solution. Numerical
experiments have been carried out for integration of six satellite orbits with
main semi-axes and eccentricities, given on Table 1. The RKF scheme of 7/8
order is accepted as a guarantee of the numerical solution stability with selection
of a constant step within defintte limits. The efficiency is estimated on the
basis of the number of computations on the right side of (4) by the formula

n = n-

Q=

where p, refers to the guaranteed scheme, and p. - to the case
nz

of choosing an optimum scheme.
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Fig. 1 presents the efficiency of the computations for each separate
orbit at different integration steps as well as the total efficiency. The stability
of the numerical solution is estimated on the basis of equation of type (4),
which includes different disturbing factors, related to the Earth gravitation
field. Fig. 2 presents the differences, obtained in the selection of optimum
integration scheme, towards the use of a scheme of the maximum order. The
temporal integration interval is one day and night. The computations are made

with requirements for local relative error €<2.107 . The estimation of the
results allows to draw up the following basic conclusions:

— the choice of a scheme, based on error estimation with the RKF methods
can result in significant economy of machine time;
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Fig. 1. Average efficiency for one day and night with numerical
integration of the equation for artificial earth satellites motion
with selection of an optimum scheme

31



by decreasing the integration step, the global stability of the solution
decreases with using schemes of lower precision order, but it is
completely satisfactory for a wide range of problems; when necessary
to achieve a better stability for a definite class of orbits, it is necessary
to point out a smaller local error:

when multi-parameter computations are made in the field of immitation

modelling, the experimenter can trust the proposed strategy for selection
of computation schemes.
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Fig. 2. The difference between the solution, obtained with

selection of an optimum scheme and with a scheme of the 7*
order, obtained for one day and night at

The numerical experiments were carried out on the basis of programmes
using the Fortran programme language [24]. For this purpose an integrator of
systems of independent vector differential equations has been developed. It
allows the integration of every system to be performed independently on the

integration of the remaining ones, with individual choice of a method of
appropriate order.
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The examined approach for integration of independent differential
equations systems 1s applicable for solution of problems with many objects.
The enhancement of the computational efficiency is especially beneficial for
problems, whose solution should be made in real time. The examined approach
provides additional opportunities, connected with computational parallelization
in multi-processor systems as well as in network computations.
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UHTETPHPAHE HA YPABHEHHUETO HA JIBH>KEHHE HA
HU3KYCTBEHU CITBTHUHUH HA 3EMATA C U3BOP HA CXEMH
HA PYHI'E-KYTA-OEJBEPI' C OIITUMAJIEH PEJ HA

TOUYHOCT
A. Amaunacoee

Pestome

Obcwxaa ce MoAxo/ 3a YHCIICHO MHTETPHPAHS Ha YPaBHEHHETO Ha
JABHXCHHC Ha UIKYCTBCHH CIIBTHHIIH Ha BCMﬂTa c H360p Ha H3IYUHCHAHTCITHAE
CXEMa OCHIYpsBalla HeoBX0ouMara JIOKaAHa TOUHOCT, PasriexanusTa ca
HANpABEHH HA OCHOBATA HA M3YMCIHTENHH CXeMM OT Tuna Ha Pynre-Kyra-
Genbepr. [Tpepnara ce kpurepuit 3a u3top Ha “onTHManHa” cxeMa.
EdexTHBHOCTTA M YCTORYMBOCTTA Ha PasTiexAaHUs IOIX0] € WIEOCTPHpaHa
¢ Pe3yATATH OT YMCICHM CKCHCPHMEHTH. M360phT Ha ONTHMANHA cXeMa €
TONXOMALN IPH PEHIABAHE Ha MHOTOMAPAMETPUUHH 3a7a9d B cdepara Ha
UMHTAIIMOHHOTO MOJENHpPaHe, KbIETO € OT 3HAYeHMe HAMAaNsaBaHeTO Ha
H3YUCIHATEIHUTE PA3XOAM IIpH AOCTATBUHA INoDaiHa yCTOHYHBOT HA
YHCIEHOTO PEHICHHE.
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